

PII: S0040-4039(97)00108-1

Highly Stereoselective Aldol Reactions of Titanium Enolates from Ethyl a-Silyloxyalkyl Ketones

Sergi Figueras, Ricardo Martín, Pedro Romea,* Fèlix Urpí,* and Jaume Vilarrasa*

Departament de Química Orgànica, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Catalonia (Spain)

Abstract: Aldol-like reactions of titanium enolates derived from a-OH, a-OBn, and a-OTBS ketones with a series of aldehydes have been studied. In sharp contrast to the O-benzyl derivatives, the TBS-protected ketones lead to excellent yields and selectivities *(syn-syn/anti-syn* ratios from 30:1 to >95:1) even for the lactate-derived substrate (2-tert-butyldimethylsilyloxy-3-pentanone). © 1997 Elsevier Science Ltd. All rights reserved.

Chiral enolates derived from α - and β -hydroxy ketones have proved to be very useful in acyclic stereocontrol and for the assembly of polypropionate-like natural products¹ since the effect of the enolisation conditions and protecting groups on the stereochemical outcome of the aldol-like reactions was established. $1-3$

Regarding the asymmetric aldol reactions involving *titanium enolates generated directly from a-hydroxy ketones* ($1 \rightarrow 2$), there is only one example, described by Evans et al.:⁴ that of 2 (in which R = cyclohexyl and $PG = TBS = Bu^tMe₂Si)$ with PhCHO. The selectivity noted in this case is implicitly associated to the large bulk of R. Since, as shown in the preceding communication,⁵ we had disclosed an easy route to compounds of general formula 1, we decided to study in depth the reactions of their titanium enolates with a few representative aldehydes. To our surprise, we have observed that any titanium **enolate of** type lz, ie when PG = TBS, but not those of type 1y, afford aldols with high diastereoselectivity. We also account here for a plausible cause of these differences.

We have first checked the aldol reaction of α -hydroxy ketones *without any protecting group* (type 1x). Luke and Morris have reported^{3b} that the titanium-mediated reaction of a β -hydroxy ketone, (S)-1-hydroxy-2methyl-3-pentanone, with isobutyraldehyde, (CH3)2CHCHO, gives the *syn-syn* aldol in excellent yield and with an acceptable diastereoselectivity (88:12). However, we have been unable to extend this reaction to α hydroxy ketones. In fact, in all attempted cases we have obtained low yields and erratic stereoselectivities.

We have achieved better results with *O-benzyl-protected* ketones (**1av, 1bv, and 1cv**). Thus, by using the enolisation conditions described by Evans et al.⁴ and isobutyraldehyde as the aldehyde, the yields could be improved (62–88%). Nevertheless, the diastereoselectivities were disappointing: a 5:1 $\frac{syn(\alpha \alpha') - syn(\alpha', \beta')}{\alpha' - np(\alpha')}$ *syn* ratio of 3ay, R' = isopropyl, from 1ay; a 4:1 ratio of 3by, R' = isopropyl, from 1by; and a 1:1 ratio of $3cy$, $R' =$ isopropyl, from $1cy$.

As this trend could rely upon the well-known coordinating ability of alkoxy (ether) groups, we have focused our attention *on the TBS group,* since the strength of silyl ethers as Lewis bases is generally assumed to be lower. 5,6 In this way we have obtained high yields and stereoselectivities in favour of the *syn-syn* isomers of 37 from the titanium enolates of α -OTBS ketones **1az**, **1bz**, and **1cz** with isobutyraldehyde (see Table 1, left side); moreover, from laz and other three types of aldehydes excellent results are also reached (Table 1, right side). Apparently, the stereoselectivity of these aldol reactions depends only moderately on the R chain, as *the syn-syn* adducts predominate in all cases.

R TBSO		Ω R TBSO	OН ÷	ŌН o R TBSO	TBSO	ĸ. TBSO	OН OН 'R' R' TBSO
$lax-1cz$		anti-syn syn-syn			syn-syn 1az		anti-syn
	ketone	yield ^b	syn-syn/anti-syn ^c		\mathbf{R}	yield ^b	syn-syn/anti-syn c
	1az	90%	30:1		$CH2CH2CH3$	85%	ca. $30:1^d$
	1 _{bz}	85%	35:1		$CCH3$ =CH ₂	86%	45:1
	1cz	70%	> 95 : 1		Ph	90%	50:1

Table 1. Ti-mediated aldol reactions of **1az-1cz** with isobutyraldehyde and of **1az** with other aldehydes ^a

^a 1 mmol of ketone (0.2 M), 1.1 equiv TiCl₄, 1.1 equiv EtPr¹₂N (DIPEA), -78 °C, 1.5 h; addition of 1.5 equiv of aldehyde; stirring at -78 °C for 1-2 h; work-up as in ref. 4. b Isolated yield (column chromatography) of the aldol mixture. C From 500 MHz ^IH NMR spectra and GC analyses; see ref. 8. d This ratio could not be exactly established (partial overlap).

The remarkable stereoselectivity differences between the α -OBn and α -OTBS cases, as well as the fact that the more crowded substrates $(R = isopropyl)$, ie $1cy$ and $1cz$) give rise to the lowest selectivity in the former case and the highest in the latter, suggest different transition states.

Our explanation is that when $PG = Bn$, as the titanium chelate is expected to predominate largely in the equilibrium,⁶ the reaction takes chiefly place through this chelate, in which R and Bn are placed in *trans* position.⁹ Two main pathways may be then involved (see Scheme 2): in the first one, with the aldehyde approaching to the chelate from the bottom, steric interactions between the aldehyde and Bn are avoided, but transition state TS-I may be seriously disfavoured when the bulk of R increases; in the second approach and in TS-II, the steric interactions may be just the opposite. This explains the above-mentioned decrease of diastereoselectivity showed by the O-benzyl-protected ketones in going from $1ay$ to $1cy$.

On the other hand, in the α -OTBS case, since the 5-membered chelate is likely not so abundant in the equilibrium,5,10 the non-chelated transition states should also be taken into account. Our results may be rationalised if the standard 6-membered TS, 4.11 TS-III, is favoured over TS-IV (as expected, see Scheme 3), as well as in relation to the more crowded bicyclic systems, especially when R and R' become bulkier.

In summary, the titanium-mediated aldol reactions of ketones 1 proceed in high yields and with high stereoselectivities (which are rather independent of the R and R' chains) if they are protected with TBS. This is not the case for the Bn-protected analogues. The differences are rationalised on the basis of TS models that take into account the known, distinct chelating abilities of the two series. Further studies are in progress.

Acknowledgments

This work has been supported by the CICYT, Ministerio de Educación y Ciencia (Project SAF93-0201). A grant from the CIRIT, Generalitat de Catalunya (GRQ93-1096) is acknowledged as well.

References and Notes

- **1. For recent reviews, see: (a)** *Comprehensive Organic Synthesis,* Vol. 2; Trost, B. M.; Fleming, I.; Heathcock, C. H. Eds.; Pergamon Press: Oxford, 1991 (Heathcock, C. H., p. 181. Kim, B. M.; Williams, S. F.; Masamune, S., p. 239. Paterson, I., p. 301. Gennari, C., p. 629). (b) Franklin, A. S.; Paterson, I. *Contemporary Organic Synthesis* 1994, 1, 317.
- 2. ct-Hydroxy ketones: (a) Van Draanen, N. A.; Arseniyadis, S.; Crimmins, M. T.; Heathcock, C. H. J. *Org. Chem.* 1991, *56,* 2499. (b) Choudhury, A.; Thornton E. R. *Tetrahedron Lett.* 1993, *34,* 2221. (c) Paterson, I.; Wallace, D. J.; Velázquez, S. M. *Tetrahedron Lett.* **1994**, 35, 9083.
- 3. 13-Hydroxy ketones: (a) Paterson, I.; Tillyer, R. D. *Tetrahedron Lett.* 1992, *33,* 4233. (b) Luke, G. P.; Morris, J. J. *Org. Chem.* 1995, *60,* 3013. (c) Evans, D. A; Dart, M. J.; Duffy, J. J.; Rieger, D. L. J. *Am. Chem. Soc.* 1995, *117,* 9074. (d) Evans, D. A.; Yang, M. G.; Dart, M. J.; Duffy, J. L. *Tetrahedron Lett.* 1996, *37,* 1957.
- 4. Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpf, F. J. *Am. Chem. Soc.* 1991, *113,* 1047.
- 5. Pascual, O.; Martin, R.; Romea, P.; Rovira, R.; Urpf, F.; Vilarrasa, J. Preceding communication in this issue.
- 6. See, eg: (a) West, R.; Wilson, L. S.; Powell, D. L. J. *Organometal. Chem.* 1979, *178,* 5. (b) Shambayati, S.; Blake, J. F.; Wierschke, S. G.; Jorgensen, W. L.; Schreiber, S. L. J. *Am. Chem. Soc.* 1990, *112,* 697. (c) For a review, see: Shambayati, S.; Schreiber, S. L. In *Comprehensive Organic Synthesis,* Vol. 1; Trost, B. M.; Fleming, I.; Schreiber, S. L., Eds.; Pergamon Press: Oxford, 1991, p. 283.
- 7. Selected data for **3az**, R' = isopropyl: $\lceil \alpha \rceil_D$ +24.7 (c 0.89, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 4.19 $(a, J 7.0, 1 H)$, 3.42 (dd, J 8.8, J 2.4, 1 H), 3.32 (qd, J 7.2, J 2.4, 1 H), 1.67 (m, 1 H), 1.32 (d, J 7.0, 3) H), 1.11 (d, J 7.2, 3 H), 1.00 (d, J 6.6, 3 H), 0.90 (s, 9 H), 0.82 (d, J 6.8, 3 H), 0.07 (s, 3 H), 0.06 (s, 3 H); 13C NMR (75.4 MHz, CDC13) 8 219.7, 76.0, 74.6, 41.3, 30.4, 25.7, 21.4, 19.4, 18.8, 18.0, 9.4, -4.7 , -5.0 . For 3az, R' = propyl: $[\alpha]_D +9.1$ (c 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 4.19 (q, J 6.9, 1 H), 3.82 (m, 1 H), 3.10 (qd, J 7.2, J2.8, 1 H), 1.55-1.40 (m, 2 H), 1.35-1.22 (m, 2 H), 1.31 (d, J6.9, 3 H), 1.11 (d, J 7.2, 3 H), 0.91 (t, J 7.2, 3 H), 0.90 (s, 9 H), 0.07 (s, 3 H), 0.06 (s, 3 H); 13C NMR (75.4 MHz, CDCl₃) δ 219.1, 74.5, 70.6, 44.1, 36.1, 25.7, 21.3, 19.2, 18.0, 14.0, 9.9, -4.7, $-5.0.$ For 3az, R' = propen-2-yl: $\alpha|_D$ +12.4 (c 0.97, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 5.10 (m, 1 H), 4.94 (m, 1 H), 4.21 (q, J 6.9, 1 H), 3.30 (qd, J 7.2, J 2.8, 1 H), 1.67 (m, 3 H), 1.28 (d, J 6.9, 3 H), 1.06 (d, J 7.2, 3 H), 0.91 (s, 9 H), 0.08 (s, 3 H), 0.07 (s, 3 H); ¹³C NMR (75.4 MHz, CDCl₃) δ 219.2, 143.2, 111.8, 74.6, 73.2, 41.8, 25.7, 21.3, 19.6, 18.0, 9.6, -4.6, -5.0. For 3az, R' = phenyl: $\lceil \alpha \rceil_D$ +4.2 (c 1.0, CHC13); 1H NMR (500 MHz, CDC13) 8 7.34-7.30 (m, 4 H), 7.23 (m, 1 H), 5.03 (d, J 3.7, 1 H), 4.14 (q, J 6.9, 1 H), 3.37 (qd, J 7.2, J 3.7, 1 H), 1.27 (d, J 6.9, 3 H), 1.05 (d, J 7.2, 3 H), 0.90 (s, 9 H), 0.08 (s, 3 H), 0.06 (s, 3 H); 13C NMR (75.4 MHz, CDC13) 8 218.7, 141.7, 128.2, 127.2, 125.9, 74.6, 72.8, 46.9, 25.7, 21.0, 18.0, 10.4, -4.7, -5.0.
- 8. Stereochemical assignments for cases $3a\mathbf{z}$, $3b\mathbf{z}$, and $3c\mathbf{z}$ (all, R' = isopropyl) as well as for $3a\mathbf{z}$, R' = Ph, according to the procedure of Heathcock et al. (ref. 2a): deprotection of the benzyl group $(H_2, Pd/C, EtOH)$, overnight, rt) or TBS group (48% HF, CH3CN, rt) yield dihydroxy ketones which were oxidized (NalO4) to known β -hidroxy acids. After hydrogenation, compound $3az$, R' = propen-2-yl, gave the same stereoisomer as $3az$, $R' =$ isopropyl.
- 9. Chelation of SnCI4 by lay has been demonstrated: Reetz, M. T.; Harms, K.; Reif, W. *Tetrahedron Lett.* **1988,** *29,* 5881.
- 10. (a) Kahn, S. D.; Keck, G. E.; Hehre, W. J. *TetrahedronLett.* 1987, *28,* 279. (b) Sarko, C. R.; Guch, I. C.; DiMare, *M. J. Org. Chem.* 1994, *59,* 705, and references 11-14 therein.
- 11. Bernardi, A.; Capelli, A. M.; Comotti, A.; Gennari, C.; Gardner, M.; Goodman, J. M.; Paterson, I. *Tetrahedron 19 91, 47,* 3471, and references cited therein.

(Received in UK 2 December 1996; *accepted* 17 *January* 1997)